Thermospheric composition changes seen during a geomagnetic storm
نویسندگان
چکیده
منابع مشابه
A combined solar and geomagnetic index for thermospheric climate
Infrared radiation from nitric oxide (NO) at 5.3 µm is a primary mechanism by which the thermosphere cools to space. The Sounding of the Atmosphere using Broadband Emission Radiometry (SABER) instrument on the NASA Thermosphere-Ionosphere-Mesosphere Energetics and Dynamics satellite has been measuring thermospheric cooling by NO for over 13 years. In this letter we show that the SABER time seri...
متن کامل3-D GCM modelling of thermospheric nitric oxide during the 2003 Halloween storm
Numerical modelling of thermospheric temperature changes associated with periods of high geomagnetic activity are often inaccurate due to unrealistic representation of nitric oxide (NO) densities and associated 5.3-μm radiative cooling. In previous modelling studies, simplistic parameterisations of NO density and variability have often been implemented in order to constrain thermospheric temper...
متن کاملGeomagnetic storm effects on GPS based navigation
The energetic events on the sun, solar wind and subsequent effects on the Earth’s geomagnetic field and upper atmosphere (ionosphere) comprise space weather. Modern navigation systems that use radio-wave signals, reflecting from or propagating through the ionosphere as a means of determining range or distance, are vulnerable to a variety of effects that can degrade the performance of the naviga...
متن کاملLong-term changes in thermospheric composition inferred from a spectral analysis of ionospheric F-region data
A study of ionospheric data recorded at Slough/Chilton, UK, from 1935 to 2012, has revealed longterm changes in the relative strength of the annual and semiannual variability in the ionospheric F2 layer critical frequencies. Comparing these results with data from the southern hemisphere station at Stanley in the Falkland Islands between 1945 and 2012 reveals a trend that appears to be anti-corr...
متن کاملGPS phase scintillation and proxy index at high latitudes during a moderate geomagnetic storm
The amplitude and phase scintillation indices are customarily obtained by specialised GPS Ionospheric Scintillation and TEC Monitors (GISTMs) from L1 signal recorded at the rate of 50 Hz. The scintillation indices S4 and σ8 are stored in real time from an array of high-rate scintillation receivers of the Canadian High Arctic Ionospheric Network (CHAIN). Ionospheric phase scintillation was obser...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Advances in Space Research
سال: 1992
ISSN: 0273-1177
DOI: 10.1016/0273-1177(92)90474-c